Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Math Biosci Eng ; 19(4): 3269-3284, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1667425

ABSTRACT

Research on the relationship between drugs and targets is the key to precision medicine. Ion channel is a kind of important drug targets. Aiming at the urgent needs of corona virus disease 2019 (COVID-19) treatment and drug development, this paper designed a mixed graph network model to predict the affinity between ion channel targets of COVID-19 and drugs. According to the simplified molecular input line entry specification (SMILES) code of drugs, firstly, the atomic features were extracted to construct the point sets, and edge sets were constructed according to atomic bonds. Then the undirected graph with atomic features was generated by RDKit tool and the graph attention layer was used to extract the drug feature information. Five ion channel target proteins were screened from the whole SARS-CoV-2 genome sequences of NCBI database, and the protein features were extracted by convolution neural network (CNN). Using attention mechanism and graph convolutional network (GCN), the extracted drug features and target features information were connected. After two full connection layers operation, the drug-target affinity was output, and model was obtained. Kiba dataset was used to train the model and determine the model parameters. Compared with DeepDTA, WideDTA, graph attention network (GAT), GCN and graph isomorphism network (GIN) models, it was proved that the mean square error (MSE) of the proposed model was decreased by 0.055, 0.04, 0.001, 0.046, 0.013 and the consistency index (CI) was increased by 0.028, 0.016, 0.003, 0.03 and 0.01, respectively. It can predict the drug-target affinity more accurately. According to the prediction results of drug-target affinity of SARS-CoV-2 ion channel targets, seven kinds of small molecule drugs acting on five ion channel targets were obtained, namely SCH-47112, Dehydroaltenusin, alternariol 5-o-sulfate, LPA1 antagonist 1, alternariol, butin, and AT-9283.These drugs provide a reference for drug repositioning and precise treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Drug Repositioning , Humans , Ion Channels , Neural Networks, Computer , SARS-CoV-2
3.
Clin Infect Dis ; 72(4): 604-610, 2021 02 16.
Article in English | MEDLINE | ID: covidwho-1087719

ABSTRACT

BACKGROUND: Train travel is a common mode of public transport across the globe; however, the risk of coronavirus disease 2019 (COVID-19) transmission among individual train passengers remains unclear. METHODS: We quantified the transmission risk of COVID-19 on high-speed train passengers using data from 2334 index patients and 72 093 close contacts who had co-travel times of 0-8 hours from 19 December 2019 through 6 March 2020 in China. We analyzed the spatial and temporal distribution of COVID-19 transmission among train passengers to elucidate the associations between infection, spatial distance, and co-travel time. RESULTS: The attack rate in train passengers on seats within a distance of 3 rows and 5 columns of the index patient varied from 0 to 10.3% (95% confidence interval [CI], 5.3%-19.0%), with a mean of 0.32% (95% CI, .29%-.37%). Passengers in seats on the same row (including the adjacent passengers to the index patient) as the index patient had an average attack rate of 1.5% (95% CI, 1.3%-1.8%), higher than that in other rows (0.14% [95% CI, .11%-.17%]), with a relative risk (RR) of 11.2 (95% CI, 8.6-14.6). Travelers adjacent to the index patient had the highest attack rate (3.5% [95% CI, 2.9%-4.3%]) of COVID-19 infection (RR, 18.0 [95% CI, 13.9-23.4]) among all seats. The attack rate decreased with increasing distance, but increased with increasing co-travel time. The attack rate increased on average by 0.15% (P = .005) per hour of co-travel; for passengers in adjacent seats, this increase was 1.3% (P = .008), the highest among all seats considered. CONCLUSIONS: COVID-19 has a high transmission risk among train passengers, but this risk shows significant differences with co-travel time and seat location. During disease outbreaks, when traveling on public transportation in confined spaces such as trains, measures should be taken to reduce the risk of transmission, including increasing seat distance, reducing passenger density, and use of personal hygiene protection.


Subject(s)
COVID-19 , China/epidemiology , Disease Outbreaks , Humans , SARS-CoV-2 , Travel
4.
Journal of Food Science and Technology ; 38(2):1-7, 2020.
Article in Chinese | CAB Abstracts | ID: covidwho-824555

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) and its global epidemic shocked the world, which inspired the new thinking of food structure and consumption pattern from consumers. The scientific concept of nutrition and health and the appeals of good life caused wide society attention. It is bound to profoundly influence food industry, especially to the emerging industry of food for special medical purposes (FSMP). Face to the epidemic outbreak of COVID-19 without specific drugs, nutritional support treatment is an important intervention method for front-line treatment, and there is no FSMP for patients with COVID-19 yet. Based on the characteristics and nutritional needs of patients with respiratory system disease, the development concept of product suitable for diagnosis and treatment of respiratory diseases was designed via the adjustment of energy supply of macronutrients and the addition of microelement. The specific full-nutritional powder, emulsion, and functional fat emulsion for respiratory system diseases were designed via research and optimization of raw material screening and process, which should be applied strongly for nutritional treatment and life support after the epidemic.

SELECTION OF CITATIONS
SEARCH DETAIL